If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+41y-56=0
a = 6; b = 41; c = -56;
Δ = b2-4ac
Δ = 412-4·6·(-56)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-55}{2*6}=\frac{-96}{12} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+55}{2*6}=\frac{14}{12} =1+1/6 $
| 12x-7=7x-42 | | x^2-6x-49=16 | | 6×-5+x=2x-20 | | x-(0.20x)=3 | | -4(x+5)-8=-28 | | 28-(-4)=-2x+14-x | | 2+5x-9=3x+2 | | x^2-12x-90=-6 | | 55.96=3.14159×r×8.5 | | (1/2)^x=125 | | 10x^2=-20x=80 | | 3x^2+24x-9=0 | | 9y÷5=8 | | 9m-4(2m-5)=12 | | (y*y*y*y*y*y*y)+39=0 | | 0.8x=-2.8+x | | ⅝t+14=-11 | | 12.8+0.8x=10+x | | 2`+4n=24 | | -7m=12 | | (1)/(5)(2y+3y)-8=-y+4 | | 7-7=x-6 | | 2.7-1.2x=0.3 | | 7.68=u/6 | | 5/3x=8/3+x | | 4(1-3x)+7×=9 | | 3n+4=-12 | | x+1/2-x+3/3=5 | | (x+1)/2-(x+3)/3=5 | | 62=2x+2x-6 | | 28=2x+2x-6 | | 10p+-16p=-18 |